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COLLAPSE OF ONE-COMPONENT VAPOR BUBBLE 
WITH TRANSLATORY MOTION 

MILAN DIM& 
Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Yugoslavia 

(Received 8 March 1976 Ed in r~~e~~~rrn 15 Feb~ary 1977) 

Abstract-Theoretical analysis of one-component vapor bubble collapse with translatory motion in 
uniformly subcooled liquid has been carried out. The bubble is spherical and flow in the region surrounding 
the bubble is potential. General solution is obtained in which the function R = R(r) is defined implicitly by 
integral equation. General solution is reduced to the quasi steady state and quasi linear problem. Quasi 
steady state solution is used to obtain a set of simple and explicit expressions by which the bubble radius is 
determined in function of time. The results of theoretical analysis are compared with those given by other 
authors and available experimental data. The agreement between compared experimental data and 

theoretical results is very good, 

= gRi/v2, Archimed number 
[dimensionless] ; 
specific heat of liquid [J/kgK J ; 
function defined by equation (36) 
[dimensionless] ; 
function defined by equation (37) 
[dimensionless] ; 
= ar/R$, Fourier number 
[dimensionless]; 
gravitational acceleration 
constant [m/s21 ; 

G(8, t), function defined by equation (34) 

NOMENUTURE 

thermal diffusivity [m2/s] ; 
function defined by equation (18) 

[l/al; 

[dimensionless] ; _ 
variable defined by equation (35) 
[dimensionless]; 
enthalpy of liquid [J/kg] ; 
latent heat of evaporation 

iIJk1; 
C&?P(T- %I = 

p”Ai ’ 
Jakob number [dimensionless] ; 
coefficient defined by equation (53) 
[dimensionless] ; 
dimensionless group (50); 
variable defined by equation 

(10) [m’]; 
P(f?, r), function defined by equation (16) 

[s’!2] ; 
Pea, = 2Ro w&r, Peclet number 

[dimensionless] ; 
Pf-9 = v/a, Prandtl number 

[dimensionless] ; 
I’, radial position [m J ; 
K bubble radius [ml; 

Rff* initial bubble radius [m] ; 

Rc = 2R, w,/v, Reynolds number 
dimensionless] ; 

T temperature [K] ; 

wet translational velocity of bubble 
motion [m/s] ; 

WPT bulk liquid velocity (53) [m/s]. 

Greek symbols 

A = R/R,, relative radius of bubble 
[dimensionless] ; 

40, T), thermal boundary layer 
thickness [m] ; 

-% dimensionless time (2); 
i, resistance coefficient (51) 

[dimensionless] ; 
6, angle [rad] ; 
4 thermal conductivity of liquid 

[W/mKl ; 
P> dynamic viscosity of liquid 

[Ns/m2] ; 
1’s kinematic viscosity of liquid 

[m’isl; 
P. density of liquid [kg/m3]; 

0, surface tension [N/m] ; 
5, time [s]. 

Subscripts 

0, initial state ; 
a, refers to value at great distance 

from the bubble; 
1. refers to bubble surface. 

Superscripts 
II 
f refers to vapor phase. 

INTRODUCTION 

THE PROBLEM of the bubble collapse has been analyzed 
in several papers. Bankoff and Mikesell [l] are among 
the first who tried to make such an analysis. They 
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analyzed the growth problem and bubble collapse 
considering only the influence of liquid inertia. Flour- 
schuetz and Chao [2] have obtained solution in- 
vestigating collapse mechanism directed by the heat- 
transfer process, 

2R, lR2 c=---+- - -1 
( 1 3 R 3,R0 

(1) 

where dimensionless time is defined with 

4 
E = - JaZFo. (2) 

7T 

Voloshko and Vurgaft [3] determined the bubble 
radius from macroscopic energy balance equation 
where for the form of temperature field is accepted 
solution of the problem of unsteady-state heat con- 
duction through a semi-infinite body. For the bubble 
radius is obtained 

In all these papers the collapse process has been 
analyzed as spherical symetric problem, in which the 
bubble center is motionless in relation to the liquid. It 
is certain however, that far greater technical impor- 
tance has the collapse process of vapor bubbles which 
move relatively in relation to the liquid. There are a few 
theoretical papers on this problem. Wittke and Chao 
[4] have obtained numerical solutions for limiting 
cases of short and long time. Serious study of this 
problem was made by a group of authors whose results 
have been published in a series of papers [S-7]. 
General assumptions from [5,6] have been used by 
Moslem and Sideman in [7] for direct quantitative 
analyzing of influence of the translatory motion vel- 
ocity on the collapse process. Two solutions are 
shown ; 

p = [1 -$n-‘,*.InPe& ‘Fo]~,’ (4) 

for constant velocity of translatory motion (condition 
w,) = const.) 

p = [I -+-l ZJaPe;,2Foy 

for translatory motion velocity dependent on 
bubble radius. 

In [8] is presented the analytical solution of 

(5) 

the 

the 
problem of vapor bubble growth with translatory 
motion. In our paper general mathematical method for 
solution the basic differentia1 equation from 
Ruckenstein’s and Davis’s paper [S] will be accepted 
(this method has also been analyzed in [PI). The 
difference between solution presented in this paper and 
the general solution of the bubble growth problem in 
[8] is based on the variety of differential equation 
forms which are the subject of analyzing [see equation 
(9) in [S] and (I 1) in this paper]. In that way we have 
obtained explicit solutions of the stagnant bubble 
collapse problem, as well as a set of simple relations 
from quasi steady state solution. 

PROBLEM FORMU~~ON 

The temperature field around the vapor bubble can 
be obtained from differential energy equation [S] 

and by satisfaction of boundary and initial conditions 

T(r, 8.0) = T, (7) 

T(co, 8, f) = T, (8) 

T(R, 9,~) = 7;. (9) 

Introducing a new independent variable [lo] 

m = f[r” - R3(r)] (101 

and limiting to temperature change in a thin boundary 
layer near the bubble surface (where 3m/R cc 1) equa- 
tion (6) can be approximated to 

The boundary and initial conditions are 

T(m, 0,O) = T, 

T(%,&T)= T, 

T(0, f?, t) = ?;. 

GENERAL SOLUTION OF DIFFERENTIAL 
EQUATION 

Differential equation (11) can be solved by ma- 
thematical method given in [8]. Because that its details 
will not be presented. 

Together with boundary and initial conditions 
(12)-(14), the general solution of differential equation 
(11) is expressed with 

T(m,&r)= T,+(T,--T)erfc (15) 

in which the thickness of temperature boundary layer 
is 

6% r) 

= 2&j’{ i0 R4(p)exp/ J’#+, B,s)ds idpi”’ 

= 2PP@, r) (16) 

#(% @, 7) 

1 -tan’(8/2)expl 3fA(e)dr / 

= 6/4(s)-- 

l+tan2(0/2)expl 3)“A(r)de 1 

(17) 

w,(R) 
A=_----- 

R 
(18) 
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GENERAL SOLUTION FOR DETERMINING 

THE BUBBLE RADIUS 

The bubble radius change in function of the tem- 
perature gradient on the interface of the bubble surface 
will be determined from the macroscopic energy 
balance equation written for the bubble as a whole, 

sin 0 de. (19) 

Replacing (IS)-(17)in (19) we get 

It is evident that the general solution for determin- 
ing the bubble radius (20) is an implicit integral 
equation. For direct determining momentary values of 
the bubble radius should be used numerical technique. 
It is noteworthy that in the equation (20) the trans- 
latory motion velocity of the bubble centre is expressed 
by functional dependence 

w0 = f(R). (21) 

Therefore the general solution (20) cannot be used for 
explicit determination of R(7) until the relation (21) is 
concrete. 

Discussion on the further problem analysis will be 
connected with the solution of several special cases 
defined by certain specifications of the bubble trans- 
latory motion velocity (21). 

where the used sign was 

(25) 

With new differentiation, using (24), (25), we get 

dS 7[ 
- ___ (SR)‘. 

dR - 2aR, Ja’ 
(26) 

It follows from (26) that, 

12aJa2 
R3- 3R;+- 7 R+2R;=O. (27) 

II 

From the solution of the cubic equation (27) we find 

/I(7) = 2( 1 +&)I!2 

x cos{j[x+arccos(l +.s-3’2]}. (28) 

The obtained solution (28) is in qualitative agree- 
ment with the solution of the bubble growth problem 
shown in [lo]. 

COLLAPSE OF VAPOR BUBBLE DEFINED 
AS QUASI LINEAR PROBLEM 

The assumption of quasi linearity of the problem 
brings to a statement that the velocity of the bubble 
translatory motion and its radius are connected with 
linear dependence 

w,, = BR. (29) 

The condition (29) leads to the approximation 

A(7) = B = const. (30) 

Replacing (30) in (16) for the thickness of temperature boundary layer is obtained . 
iJ I R(P) 

12 

6(e,7) = 2a’!‘[l +tan2(8/2)12 
0 exp[-@(p-7)] + tan2(0/2)exp[$B(p-r)] 

= 2a1’2P(0, r). (31) 

COLLAPSE OF A STAGNANT BUBBLE 

One of the limiting cases of the analyzed problem is 
the bubble collapse process whose centre is motionless 
in relation to liquid. 

From the problem definition it follows 

1vg - -0 

A(7) = 0 

d(s, f&7) = 0 

P(7) = 1 j; R4(p)dp lli2 

Using (22) it is obtained from (20) 

(22) 

Ro 
-=l-R,Ja f? 
R(7) i.i;‘!j I;R4;)dp ,l!2.(23) 

In differential form the equation (23) is as follows 

S = RoJa(ij1’21 Jb R4(p)dp 1-l” (24) 

For determining the bubble radius in function of 
time still general solution (20) is valid, in which 
assuming the quasi linearity of the problem, the 
function P(0,7) is specified through (31). 

COLLAPSE OF VAPOR BUBBLE DEFINED 
AS QUASI STEADY STATE PROBLEM 

The assumption of quasi steady state problem leads 
to the assertion that the bubble radius change during 
the collapse has not any essential influence on the form 
of the temperature field, and according to that neither 
the thickness of the boundary layer. 

The mentioned approximation is analytically ex- 
pressed as the assumption 

A, R = const. (32) 

in expressions by which the thickness of the boundary 
layer is determined. 

Assuming the condition (32), equation (16) becomes 

w, 7) (33) 
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G(0.r) = 
i 

1+3tanZ(8/2)exp(-H) 
Cr+t 

an2(0!2)exp( -H)13 

1-t3tanZ(H/2) * * 

-Cl +tan’(@i2)]’ 
(34) 

in which dimensionless time is designated with H 

H f EAT. (35) 

The function (34) is qualitatively identica1 with solu- 
tion obtained in [ll]. 

Bubble radius can be determined from the equation 
which is obtained by replacing (33) in the general 
solution (20) 

Jo 2a , ‘,‘J 
G- 

8A ,! I 
E(H)dH (36) 

s ’ 
Ro 

fA(R)]-“2dR =!?(?!)“2 
H 

X s F(W. (37) 
0 

It is noteworthy that by increasing the value H the 
function E(H) converges very quickly to 

*77 sin3 0 de 8 
lim E(H) = - ,I 0 J l _ 1+3 tan’ (e,/2) 

i= -, 
El-7 

i 

l2 3 
(38) 

i [I i-tan2(Q/2)]3 

~umerica1 analysis shows that convergence of the 
given integral is practicatly provided by satisfying the 
condition 

IH[& 3. (39) 

Under such circumstances when validity of con- 
dition (39) is provided the bubble radius is determined 
by very simple dependence 

[A(R)]-' ‘dR = Jo(: j1’2r. (40) 

EXAMPLES OF EXPLICIT EXPRESSIONS FOR 
DE~RM~~NG THE BUBBLE RADIUS 

Our basic intention is to illustrate the method and to 
get the last forms of solution in which the bubble 
radius can be defined by functional expressions of 
explicit type convenient for wide technical use. For 
that purpose it should perform integration (37) or (40) 
with adopted dependences of the bubble translatory 
motion velocity (21). From practical reasons we will 
accept validity of condition (39) where the bubble 
radius is defined from the simplest dependence (40). 

It is evident that any function (21), integral on R, can 
be included in (40). It gives great possibilities for 
relatively large numbers of existing expressions used 
for determining thermal velocity of vapor or gas 

bubble rise to be included in (40) and in that way a set 
of different expressions for determining R = R (7) can 
be obtained. We shall limit ourselves to illustrations of 
this method by accepting several well known forms 
(21). 

We shall accept five characteristic cases of different 
gas bubble flow regimes. 

Case I : Constant tra~slut~o~l~i velocity* 
Under the condition 

#‘rr = const. 

it follows from (40) that 

fl= [l +an- ’ 2Pe,Fo]2 2. (41) 

The solution (41) is the same as obtained in [7] [see 
equation (4)]. 

Case II: Radius dependent translational velocity in 
Stokesjlow (Re < 2) 

In Stokes flow regime (Re < 2) translational vei- 
ocity of the bubble motion is defined as 

w0 = - - HdR2 
9 I’ 

where H, is the Hadamard factor defined by [ 121 

H,= 1 

(without internal circulation) 

H, = 
I+ (K/P) ’ 

(2’3)+ (/C/P) I 
(with internal circulation). 

In this case we find from (40) that 

j3 = [Ii -+(H&~)“~f,4rPr)’ “JaFo]“. (43 1 

Case III: Radius dependent translational velocit? 
(Re > 2) 

In this case the bubble Row is characterised by 
appearance of internal circulation, but the bubble’s 
shape is still spherical. 

The upper boundary of this regime is defined by [ 131 

,._3 0.214 

Re=4.02(%1 

The translational rise velocity is defined by empiri- 
cal expression [12] 

w0 = 0.347g3 ‘\I- ’ 2R5 ‘. (45) 

Substituting (45) into equation (40) we obtain 

/I = [t -&0.694/n)’ ZAr3 ‘Pr’ ‘JuF’~]~ 7. (46) 

Case IV: Radius dependent translational velocity with 
bubbles of variable shape 

In this regime of flow the bubble’s shape is variable 
(it is mostly approximated by ablate spheroid ). 

The lower boundary of this case is defined by the 
Reynolds number calculated from (44). 
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The upper boundary is defined by [ 133 
3 0.25 

,,=3.l(>j (47) 

The translational rise velocity can be obtained from 
[12-141 

M’. = 1.35(0!p)‘% - l 2. 

Using (48), from (40) we have 

/I = [1-$(2,7/n) 2K;‘4JaFoJA 7 
where 

(48) 

(49) 

Case V: Radius dependent translational velocity 
(Re > 20) 

In this case, we shall accept that the translational 
rise velocity can be defined by [ 151 

(51) 

where the resistance coefficient [ is constant. 
It follows from (51) and (40) that 

/I = [I - ;(6<7?)- 1 4Ar’ 4Pr’ ZJoF0-y 5. (52) 

DISCUSSION AND COMPARISON WITH 
EXPERIMENTAL DATA 

It can be seen that the generalsolution which defines 
the bubble radius change during condensation is 
obtained as integral equation (20). It can be solved 
only numerically. Numerical integration method re- 
quests the assumption of the bubble’s translatory 
motion velocity wa. While there are no actual basis for 
iteration numerical procedure on w,, the general 
solution can be directly analyzed from the point of 
influence which has the absolute translational velocity 
on the character of the bubble radius change. This sort 
of qualitative analysis is, for the bubble growth 
process, presented in [8]. Because the results of such a 
numerical analysis of the general solution (20) are 
qualitatively identical with [8] (with change of the sign 
in the bubble growth equation, while the condensation 
process is in question, see discussion in [16]) they will 
not be presented in this paper. 

In contrast to the general solution, by assuming the 
quasi linearity of the problem, the result (31) is 
obtained for direct use of which need not accept the 

d \ o.e- 
oz 

07- 

1 I 1 I 1 I 0 2. 4 6 8 10 

F. IO-’ 

Fig. I. Comparison between theoretical solutions for col- 
lapse of stagnant bubble. 1. Equation (l), [2]; 2. Equation 

(28), this paper; 3. Equation (3),[3f. 

velocity wO. Translational velocity is according to (42). 
(45), (48), (51) actually proportional with the bubble 
radius. The assumption (30) actually means the linear 
approximation of this dependence. It should be 
pointed out that utilizing of quasi linear solution 
makes the numerical iteration technique much easier. 

The assumption of quasi steady state problem 
enables solutions by which the bubble radius is defined 
by functional dependences of explicit type. Because of 
evident convenience of those solutions in relation to 
the wide technical application we shall give a special 
attention to the possibilities of their use. 

First we shall compare equation (28), which is valid 
for collapse of stagnant bubbles, with the results given 
by the other authors (1) [2] and (3) [3]. The results are 
presented in Fig. 1. 

Curves in Fig. 1 are drawn for the case if the value Ja 
= 30. It can be seen that all the three present solutions 
give the curves of the same character. The differences 
between absolute values are within the range of &- 67;. 

For the direct practical using of quasi steady state 
solution (33) the functions E(H) and F(H) shouid be 
determined. Some characteristic values obtained by 
numerical determinations of functions E(H) (36) and 
F(H) (37) are given in the Table 1. The accepted initial 
valueoffunction F(H)is given with F(H) = 0 when H 
= 0.001. 

The earlier pointed fact connected with convergence 
of the function E(H) is evident. The condition (39) is 
not fulfilled only in the initial period of the conden- 
sation process. Time during which the condition (39) 
will be fulfilled depends on absolute value R, and 
the~ophysical properties. To illustrate the absolute 
value of lasting that part of the process, let us give a 

H= 

E(H)= 
F(H)= 

H= 
E(H)= 
F(H)= 

H= 
E(H)= 
F(H)= 

0.001 

103.168 
0 

0.2 7.323 
2.988 

3 
2.7052 

12.7054 

Table 1 

0.005 0.01 0.05 0.15 

46.1828 32.6552 14.608 8.446 
0.2987 0.49578 1.441 2.5938 

0.3 0.5 5.9998 4.69792 i.48186 i.84294 
3.6542 4.7239 6.76884 9.93124 

5 10 100 
2.6676 2.6666 2.6666 

18.078 31.416 271.416 
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small numerical example with real accepted values 
for w0 and R,. Let it be: w0 = 30. 10-2[m], Re = 
0.57. 10W3[m]. Under given conditions the time 
when the condition (39) is fulfilled is r = 1.9. low3 [sf. 

In the further discussion we shall assume that the 
condition (39) is fulfilled during the whole conden- 
sation process. 

It has already been pointed out to the fact that 
solutions (4) [7] and (41) are identical. On the other 
hand solutions (5) [7] and (52) are of the same 
character. 

Voloshka and Vurgaft [3,17] have published ex- 
perimental results on the vapor bubble collapse in 
distilled water. The initial bubble radius was in the 
range of R, = (5-12.5) 10v3 [ml, while the water was 
subcooled to AT = (5-25)[K]. The process was per- 
formed by ~a~tational rising of bubbles through 
macroscopic stagnant liquid. Unfortunately in [ 171 
the presented experimental results are given without 
precise definition R,, w. and Ja for each of experimen- 
tal points. Instead of that empirical correlation for 
determining initial bubble radius was given [3] 

R, = 0.0295AT-0,53 [m]. 

All the ex~rimental results on the bubble radius 
change have been correlated by a solid line in Fig. 2 
[3]. According to [3] the deviation in correlating of 
experimental results was within the range of* 30”,,. 

From Fig. 2, it can be seen that the ex~rimentai 
correlative curve and theoretical solution (46) are in 
qualitative agreement. Deviation of theoretical solu- 
tion from experimental correlative curve is less than 
+ 30’5 - 0’ 

Abdelmessih. Hooper and Nanngia [18] have re- 
ported experimental results on the effect of forced 

Iiquid flow on the bubble growth and bubble collapse 
in distilled water. Direction of bulk liquid flow was 
vertical on the direction of the bubble rise motion. 
After detachment from the heating surface the bubble 
was exposed to the effect of horizontal component of 
the bulk liquid flow wP and vertical component of the 
bubble gravitational rise velocity ~3~. The resulting 
velocity is 

%’ = W()[l + (W,/W”)“]’ * = &(I +E()’ 2. (53) 

In order to be able to compare our theoretical 
results with the experiments we have calculated the 
factor I( on the basis of experimental values for w,, 
(from [18]) and values for wa from (42) (because the 
bubbles in experiments are very small, the largest has 
dimension ROmax = 0.256. low3 [m] ). The bubble 
radius has been figured out on the basis of solution 
(46) because the resulting flow takes pface with 
Re > 2. Flow velocity has been calculated on the 
basis of equation (53). Comparison of the results is 
given in Fig. 3. 

From Fig. 3 it can be noticed that the agreement 
between theoretical solution (46) and experimental 
results is both qualitatively and quantitatively good. It 
is also pointed out to an expected phenomena that by 
increasing the bulk liquid flow velocity the collapse 
rate is also increased. 

On this occasion wecan point out to the characteris- 
tic way of using the solution (46) in the collapse of the 
bubble with the forced bulk liquid flow by introducing 
relation (53). The presented analysis of the given 
example points out to the possibility of application of 
solutions obtained for collapse with gravitational 
bubble rise motion on the complicated collapse pro- 
blems with forced liquid flow. It is evident that in the 
case of the forced flow the collapse rate could be 

FIG. 2. Comparison between theory and experiments [3]. t. Experiments [3]; 2. Equation (46),Jn = 30; 3. 
Equation (46), Js = 45 ; 4. Equation (46), la = 60. 



Collapse of one-component vapor bubble 1331 

0 0.1 0.2 0.3 I 

c 

4 

FIG. 3. Comparison between theory and experiments [18]. 1. Equation (46), & = 0.2S6*10-3 m; K = 5.4. 
2. Equation (%), R. = 0.218. 10e3m; I( = 14.77. 3. Equation (%), R, = 0~184. 10e3m; K = 39.65. 4. 
Equation (%), R0 
= 0.218~10-3m; 

= 0.16*10-3m; K = 90.55.0, [18]. Rc = 0.2S6~i0-3m; wp = 1.142mls.0, [18-J, R. 
w p = 1.37m/s.A, [18], R,, = 0.184=10-3m; wp = l.S99m/s.A,[18], R. = 0.16~10-3m; 

wp = 1.827 m/s. 

determined from adequate solution of the collapse 
problem with the gra~tational bubble rise velocity in 
which it should be included the resultant flow velocity 
[defined by the relationship of the type (53)]. For 
generalization of this assumption it should possess 
more experimental results. 

CONCLUSIONS 

1. Collapse of single one-component vapor bubble 
is defined by the general implicit solution (20), the 
solutions obtained by assuming the quasi linearity of 
the problem (31) and the solutions obtained by the 
assuming quasi steady state problem (37), (40). 

2. Analysis of the quasi steady state solution (40) is 
performed under the assumption that the actual 
translational velocity during the collapse of the bubble 
can be approximated with thermal velocity of the 
bubble rise motion. In that way for different flow 
regimes a set of explicit functional dependences was 
obtained for determining of collapse rate. 

3. Expression (28), obtained from the general solu- 
tion (20) as the special case valid for the collapse of 
stagnant bubble is compared with those by other 
authors. The agreement between the results is within 
the deviation range of + 6:/o. 

4. Explicit solutions based on the quasi steady state 
model are compared with available experimental data 
[3,17,18]. A good agreement is shown,es~cially with 
experiments (181. It was indicated to the possibility of 
determining the collapse rate with forced bulk liquid 
flow by using a simple method of introducing the 
resultant flow velocity in the expressions obtained as 
the solutions of the quasi steady state collapse with the 
gravitational bubble rise motion. 

1. 
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COLLAPSUS D’UNE BULLE DE VAPEUR A UN SEUL COMPOSANT 
AVEC MOUVEME~ DE TRANSLATION 

R&sum&On analyse thboriquement le collapsus d’une bulle de vapeur avec un mouvement translatoire 
dans un liquide uniformkment sous-refroidi. La bulle est sphtrique et l%coulement dans la region proche 
de la bulle est potentiel. On obtient une solution g&&ale dans laquelle la fonction R = R(r) est dkfinie 
implicitement par une Cquation int6grale. La solution gCntrale est rCduite & celle d’un probleme quasi 
lineaire dPtat quasi permanent. La solution de l’btat quasi permanent est utilisee pour obtenir un 
systtme d’expressions simples et explicites par lesquelles le rayon de bulle est dkterminb en fonction du 
temps. Les rtsultats de l’analyse thCorique sont compares avec ceux don& par d’autres auteurs et avec 
des rCsultats exptrimentaux. Dans la comparaison entre don&es exp&imentales et resultats thkoriques, 

l’accord est tres bon. 

DAS ~USAMMENBRECHEN EINER TRANSLATORISCH BEWEGTEN 
EINKOM PONENTEN-DAM PFBLASE 

Zusammmfawmg-Das Zusammenbrechen einer in einer gleichfijrmig unterkiihlten Fliissigkeit translato- 
rischbewegten Einkomponenten-Dampfblase wurde theoretisch untersucht. In der Umgebung der kugelfijr- 
migen Blase wurde PotentialstrGmung vorausgesetzt. Es wurde tine allgemeine Lijsung gefunden, wobei die 
Funktion R = R(T) implizit durch eine Integralgleichung gegeben ist. Aus der allgemeinen Liisung ergeben 
sich die LGsungen fiir den quasistationlren und den quasilinearen, Fall. Aus der Liisung fiir den 
quasistationiren Fall werden einfache explizite Ausdriicke fiir den Blasenradius in Abhlngigkeit von der 
Zeit abgeleitet. Die Ergebnisse der theoretischen Untersuchung werden mit denen anderer Autoren und mit 
MeDwerten verglichen. Die Obereinstimmung zwischen experimentellen und theoretischen Ergebnissen ist 

sehr gut. 

ABJIO~P~EH - ~I~~Bo~Tc~ -m.pemfrec~oe nccnenowisie pa3pytueaea onnoKohmoneHTiior0 napo- 

Bore ny3bIpx npm lIOCTyNLTWIbHOM AmixeHHn B pasHoMepn0 oXnameHHo8 mAK0CTI.i. ny3bIpb 

HMWT C&pH'ieCKyIO @OpMy,TPiCHHe BOK&Jyr lly3blpK HOCIiT ilOT~H~&UbHbI~ XapaKTCp. nOJlyveH0 

~lrreepemenHe,BKOTOOPON(PyWKU;UII R=k(T) Oll~AeJWiaCIIOMOlLlbIOWlTe~pi3JIbHOrOypaBHeHHI 

B HeRBHOi @pMe. 06mee pWJ.WIHe CBOAHTCCII K KBa3HCTaUHOHapHOti W KBa3HJlHHetiHOfi 3aAarle. 

K~~~HCT~UHOH~~H~~~~~~~~~C~OA~~~~T~~A~R~OA~~~HH~CHC~~M~~~POCT~~XHR~HMXB~~~~~~P, 

H~~HO~KOTOp~XO~~A~~C~paaHyC~y3bI~~B~yHKUUHHB~MeHH.~e3yAbTaTbI TeoperH’IeCKO~O 

aHBnH3a CpBHHBaloTCS C ~3yAbTWabiH ApyrHX aBTOpOB H C HMeIOUHMHCR 3KCllepHMeHTaJIbHbIMH 

AaHHbtMH.~OJIy'leHO AOBOllbHO XO~llleeCOOTLWTCTBHeM~y 3KCIl~~HMeHTWlbHbIMH AaHIibIMH H 

EOpeTiWeCKHMH pe3yJIbTaTaMif. 


