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Abstract—Theoretical analysis of one-component vapor bubble collapse with translatory motion in
uniformly subcooled liquid has been carried out. The bubble is spherical and flow in the region surrounding
the bubble is potential. General solution is obtained in which the function R = R(r) is defined implicitly by
integral equation. General solution is reduced to the quasi steady state and quasi linear problem. Quasi
steady state solution is used to obtain a set of simple and explicit expressions by which the bubble radius is
determined in function of time. The results of theoretical analysis are compared with those given by other
authors and available experimental data. The agreement between compared experimental data and
theoretical results is very good.

NOMENCLATURE
a, thermal diffusivity [m?/s];
A{z), function defined by equation (18}
[1/s];
Ar, = gR3/v?, Archimed number
[dimensionless];

s specific heat of liquid [J/kgK];
E{H), function defined by equation (36)

[dimensionless];

F(H), function defined by equation (37)
{dimensionless];

Fo, = at/R}, Fourier number
[dimensionless];

. gravitational acceleration

constant [m/s?];

G{8, 7), function defined by equation (34)
[dimensionless] ;

H, variable defined by equation (35)
[dimensionless];

i, enthalpy of liquid [J/kg];

Ai, latent heat of evaporation
[I/kel;

J a, C P P { T; - Tw )
T A
Jakob number [dimensionless];

K, coefficient defined by equation (53)

[dimensionless];

K,,  dimensionless group {50};

m, variable defined by equation
(10) [m?];

P(8, 1), function defined by equation (16}
{5132};

Pey, = 2R,wy/a, Peclet number
[dimensionless];

Pr, = v/a, Prandtl number
[dimensionless];

r radial position [m];

R, bubble radius [m];
R;.  initial bubble radius [m];

Re, = 2Ry w/v, Reynolds number
[dimensionless];

T, temperature [K];

Wo, translational velocity of bubble
motion [m/s];

w,,  bulk liquid velocity (53) [m/s].

Greek symbols
B, = R/R,, relative radius of bubble
[dimensionless];

4(0, t), thermal boundary layer
thickness [m];

e, dimensionless time (2);

¢, resistance coefficient (51)
[dimensionless];

8, angle [rad];

A, thermal conductivity of liquid
[W/mK];

i, dynamic viscosity of liquid
[Ns/m?];

¥, kinematic viscosity of liquid
[m?/s];

P, density of liquid [kg/m*];

o, surface tension [N/m];

T, time [s].

Subscripts

0, initial state;

oc, refers to value at great distance
from the bubble;

i, refers to bubble surface.

Superscripts
’ refers to vapor phase.
INTRODUCTION

THE PROBLEM of the bubble collapse has been analyzed

in several papers. Bankoff and Mikesell [ 1] are among

the first who tried to make such an analysis. They
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analyzed the growth problem and bubble collapse
considering only the influence of liquid inertia. Flour-
schuetz and Chao [2] have obtained solution in-
vestigating collapse mechanism directed by the heat-
transfer process,

2R 2
2R, 1R)’_1 )

P Y
3R 3\R,

where dimensionless time is defined with

4
g =—Ja*Fo. (2)
T

Voloshko and Vurgaft [3] determined the bubble
radius from macroscopic energy balance equation
where for the form of temperature field is accepted
solution of the problem of unsteady-state heat con-
duction through a semi-infinite body. For the bubble
radius is obtained

B=1-2n"12JgFo!?2 3)

In all these papers the collapse process has been
analyzed as spherical symetric problem, in which the
bubble center is motionless in relation to the liquid. It
is certain however, that far greater technical impor-
tance has the collapse process of vapor bubbles which
move relatively in relation to the iquid. There are afew
theoretical papers on this problem. Wittke and Chao
[4] have obtained numerical solutions for limiting
cases of short and long time. Serious study of this
problem was made by a group of authors whose results
have been published in a series of papers [5-7].
General assumptions from [5, 6] have been used by
Moalem and Sideman in [7] for direct quantitative
analyzing of influence of the translatory motion vel-
ocity on the collapse process. Two solutions are
shown

B=[1-3rn"'2JaPe} *Fo]*? {4)

for constant velocity of translatory motion (condition
w, = const.)

f=[1-3n"1'2JaPel*Fo]** (5)

for translatory motion velocity dependent on the
bubble radius.

In [8] is presented the analytical solution of the
problem of vapor bubble growth with translatory
motion. In our paper general mathematical method for
solution the basic differential equation from
Ruckenstein's and Davis’s paper [8] will be accepted
{this method has also been analyzed in [9]). The
difference between solution presented in this paper and
the general solution of the bubble growth problem in
[8] is based on the variety of differential equation
forms which are the subject of analyzing { see equation
(9)in [8] and (11)in this paper]. In that way we have
obtained explicit solutions of the stagnant bubble
collapse problem, as well as a set of simple relations
from quasi steady state solution.
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PROBLEM FORMULATION

The temperature field around the vapor bubble can
be obtained from differential energy equation [§]

6_T+ Egﬁ»—wo( l——Ii)cos() IB—T
ot rt dr r? 1 it
w R? é a ¢
gl - S @
and by satisfaction of boundary and initial conditions
Tr6.0)=T, {7)
T{w0,8,1})=T, {8)
TR, 8.1)=T,. %

Introducing a new independent variable [10]
m = 4[r* —R*(z)] (10)

and limiting to temperature change in a thin boundary
layer near the bubble surface (where 3m/R « 1) equa-
tion (6) can be approximated to

oT Wo T 3 Wo oT
——3—mcosf—+ - —sinf—
it R om R a6
&#T
=aR*—. (11
ém

The boundary and initial conditions are

T(m, 6,0)=T, (12)
T(s,0,7) =T, (13)
T(0,0,7) = T,. (14)

GENERAL SOLUTION OF DIFFERENTIAL
EQUATION

Differential equation (11) can be solved by ma-
thematical method given in [8]. Because that its details
will not be presented.

Together with boundary and initial conditions
{12}-(14), the general solution of differential equation
{11)is expressed with

T(m,0,7) = T, + (T, — T))erfc| -
(m, 8, 1) +( jerfc 30.7)

(15)

in which the thickness of temperature boundary layer
is

36, 1)
. .. 12
=2a”2% R*(p)exp ¢(s,6,1)ds dp%
O R
=2a"2P(0, 1) (16)
@1{s,0,1)
1 —tan2(6/2)exp 3J Ale)de
= 6As) _ (17)
1 +tan?(8/2)exp 3‘ Ale)de
R
4= "R (18)
R
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GENERAL SOLUTION FOR DETERMINING

R(1) =

THE BUBBLE RADIUS
The bubble radius change in function of the tem-
perature gradient on the interface of the bubble surface
will be determined from the macroscopic energy
balance equation written for the bubble as a whole,
dR 1 1 {"¢0T .
— = ——— (T) sin 8d6. (19)
dt 2 p"Ai Jo \CF Jr=g
Replacing (15)—(17) in (19) we get
! (20)
R uz rrrosing '
1——"(3) JaJ J 7 4e dg
2 \n oJo P(6,8)

It is evident that the general solution for determin-
ing the bubble radius (20) is an implicit integral
equation. For direct determining momentary values of
the bubble radius should be used numerical technique.
It is noteworthy that in the equation (20) the trans-
latory motion velocity of the bubble centre is expressed
by functional dependence

wo = f(R). 21)
Therefore the general solution (20) cannot be used for
explicit determination of R(t) until the relation (21)is
concrete.

Discussion on the further problem analysis will be
connected with the solution of several special cases
defined by certain specifications of the bubble trans-
latory motion velocity (21).
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where the used sign was
S= (d—R 53). (25)
dr R?
With new differentiation, using (24), (25), we get
ds

— =————(SR)~ 26
dr 2aR0Ja2( ) (26)
It follows from (26) that,
12aJa?
R —|3R2+ % ¢ |R+2RE=0.  (27)
n

From the solution of the cubic equation (27) we find

B(x) = 2(1 +¢)*2
x cos{3[n+arccos(l +&) **]}. (28)

The obtained solution (28) is in qualitative agree-
ment with the solution of the bubble growth problem
shown in [10].

COLLAPSE OF VAPOR BUBBLE DEFINED

AS QUASI LINEAR PROBLEM
The assumption of quasi linearity of the problem
brings to a statement that the velocity of the bubble
translatory motion and its radius are connected with

linear dependence
wo = BR. (29)

The condition (29) leads to the approximation

A(r) = B = const. (30)

Replacing (30) in (16) for the thickness of temperature boundary layer is obtained

)

4 1.2

R(p)

8(6,7) = 2a"[1 +tan2(0/2)]2% J

0
= 2a'?P(8, ).

exp[ —3B(p—1)] + tan*(6/2)exp[3B(p —1)]

COLLAPSE OF A STAGNANT BUBBLE

One of the limiting cases of the analyzed problem is
the bubble collapse process whose centre is motionless
in relation to liquid.

From the problem definition it follows

wo =20
A(r) =0
¢(s,0,7)=0
. 1/2
Px)=| | R*p)dp (22)
JO
Using (22) it is obtained from (20)
R, a\V?
—— =1-RyJa| - .
R(7) 0 a(n) Jo| 1° - (3)

R*(p)dp
o

o

In differential form the equation (23) is as follows

S= RoJa(ﬁ)
T

1/2 -1;2

R*(p)dp
0

(24)

o

dp%
(31

For determining the bubble radius in function of
time still general solution (20) is valid, in which
assuming the quasi linearity of the problem, the
function P(8, 7) is specified through (31).

COLLAPSE OF VAPOR BUBBLE DEFINED
AS QUASI STEADY STATE PROBLEM

The assumption of quasi steady state problem leads
to the assertion that the bubble radius change during
the collapse has not any essential influence on the form
of the temperature field, and according to that neither
the thickness of the boundary layer.

The mentioned approximation is analytically ex-
pressed as the assumption

A, R = const. (32)

in expressions by which the thickness of the boundary
layer is determined.
Assuming the condition (32), equation (16) becomes

4R? (24\"?
8(0,7) = 35?8 (:) G(0,1) (33)
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G0.1) = % 1+3tan?(6/2)exp(—~H)
[1+tan?(8/2)exp(—H)]*
1+3tan?(#/2) }' 2
) m} (34
in which dimensionless time is designated with H

H = 34r. (35)

The function (34) is qualitatively identical with solu-
tion obtained in [11].

Bubble radius can be determined from the equation
which is obtained by replacing (33) in the general
solution (20)

_ 3
[4(R)]"'%dR =§1a( =)

™ osin®d
dé ‘d‘t
0 G(B. 1)

_Ja ( 2a,%?

E(H)dH {36)

i

[y o)

H Ja [2a\'"?
E =—|— 3
xj (s)ds 8A<n) F(H). (37)

o

1t is noteworthy that by increasing the value H the
function E{(H ) converges very quickly to
= sin® 0.do 8 (38)
'0 1+3tan?(872) (' 3

I [V +tan®(0/2)]
Numerical analysis shows that convergence of the
given integral is practically provided by satisfying the
condition

lim E(H) =

H—>

[H| 2 3. (39)

Under such circumstances when validity of con-
dition {39} is provided the bubble radius is determined
by very simple dependence

1,2

R 2a,
f [A(R)]‘”dR=Ja(—’ T. (40)
Ro n

EXAMPLES OF EXPLICIT EXPRESSIONS FOR
DETERMINING THE BUBBLE RADIUS

Our basic intention is to illustrate the method and to
get the last forms of solution in which the bubble
radius can be defined by functional expressions of
explicit type convenient for wide technical use. For
that purpose it should perform integration (37} or (40}
with adopted dependences of the bubble translatory
motion velocity (21). From practical reasons we will
accept validity of condition (39) where the bubble
radius is defined from the simplest dependence (40).

Itisevident that any function (21),integral on R, can
be included in (40). It gives great possibilities for
relatively large numbers of existing expressions used
for determining thermal velocity of vapor or gas
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bubble rise to be included in (40) and in that way a set
of different expressions for determining R = R(7) can
be obtained. We shall limit ourselves to illustrations of
this method by accepting several well known forms
21).

We shall accept five characteristic cases of different
gas bubble flow regimes.

Case 1: Constant translational velocity
Under the condition

Wy, == const.
it follows from (40) that
B=[1-3Jan ! *Pe,Fo}? 3. (41)

The solution (41} is the same as obtained in [7] [see
equation (4)].

Case I1: Radius dependent translational velocity in
Stokes flow (Re < 2)

In Stokes flow regime (Re < 2) translational vel-
ocity of the bubble motion is defined as

=]

[
Wo = ~9‘ ;HdRZ

where H, is the Hadamard factor defined by [ 12}
Ht‘ = 1

(42)

{without internal circulation)
I+ (p'iw)
23+ (/)

(with internal circulation).
In this case we find from (40) that

B =[1-4(Hy/n)"*(4rPr)* LJaFo]*.

4=

(43)

Case I11: Radius dependent translational velocity
{Re > 2)

In this case the bubble flow is characterised by
appearance of internal circulation, but the bubble’s
shape is still spherical.

The upper boundary of this regime is defined by { 13]

3 0,214
Re =402( 20
grt

The translational rise velocity is defined by empiri-

cal expression [12]

(44)

wg = 0.347g3 +v "1 2R3 4, (45)
Substituting {45) into equation (40) we obtain
B =[1—4{0.694/) 2Ar* ®Pr! 2JaFo]® 7. (46)

Case IV : Radius dependent translational velocity with
bubbles of variable shape

In this regime of flow the bubble’s shape is variable
(it is mostly approximated by oblate spheroid).

The lower boundary of this case is defined by the
Reynolds number calculated from {44).
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The upper boundary is defined by [13]

p0'3 0.25
Py

The translational rise velocity can be obtained from
[12-14]

Re = 3.1( (47)

wo = 1.35(a/p) 2R ™1 2 {48)
Using {48), from (40) we have
f=[1-327/n) 2KY* JaFo]*’ (49)
where
K= (505 (50)

Case V: Radius dependent translational velocity
(Re > 20)

In this case, we shall accept that the translational
rise velocity can be defined by [15]

8 g 1;2
wo = ( 3ok | (s1)
where the resistance coefficient { is constant.
1t follows from (51) and (40) that
B =[1—36{n?) "4 4r' *Pr' 2JaFo]* 5. (52)

DISCUSSION AND COMPARISON WITH
EXPERIMENTAL DATA

It can be seen that the general solution which defines
the bubble radius change during condensation is
obtained as integral equation (20). It can be solved
only numerically. Numerical integration method re-
quests the assumption of the bubble’s translatory
motion velocity w,. While there are no actual basis for
iteration numerical procedure on w,, the general
solution can be directly analyzed from the point of
influence which has the absolute translational velocity
on the character of the bubble radius change. This sort
of qualitative analysis is, for the bubble growth
process, presented in [8]. Because the results of such a
numerical analysis of the general solution (20) are
qualitatively identical with [8] (with change of the sign
in the bubble growth equation, while the condensation
process is in question, see discussion in [ 16}) they will
not be presented in this paper.

In contrast to the general solution, by assuming the
quast linearity of the problem, the result (31) is
obtained for direct use of which need not accept the
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Fig. 1. Comparison between theoretical solutions for col-
lapse of stagnant bubble. 1. Equation (1), [2]; 2. Equation
{28), this paper ; 3. Equation (3). [3].

velocity w,. Translational velocity is according to (42),
(45), (48), (51) actually proportional with the bubble
radius. The assumption (30) actually means the linear
approximation of this dependence. It should be
pointed out that utilizing of quasi linear solution
makes the numerical iteration technique much easier.

The assumption of quasi steady state problem
enables solutions by which the bubble radius is defined
by functional dependences of explicit type. Because of
evident convenience of those solutions in relation to
the wide technical application we shall give a special
attention to the possibilities of their use.

First we shall compare equation (28), which is valid
for collapse of stagnant bubbles, with the results given
by the other authors (1) [2] and (3) [3]. The results are
presented in Fig. 1.

Curvesin Fig. 1 are drawn for the caseif the value Ja
= 30. It can be seen that all the three present solutions
give the curves of the same character. The differences
between absolute values are within the range of + 6%,

For the direct practical using of quasi steady state
solution (33) the functions E(H) and F{H) should be
determined. Some characteristic values obtained by
numerical determinations of functions E(H) (36) and
F(H){37)are given in the Table 1. The accepted initial
value of function F(H)is given with F(H) = O when H
= 0.001.

The earlier pointed fact connected with convergence
of the function E(H) is evident. The condition (39) is
not fulfilled only in the initial period of the conden-
sation process. Time during which the condition (39)
will be fulfilled depends on absolute value R, and
thermophysical properties. To illustrate the absolute
value of lasting that part of the process, let us give a

Table 1

= 0.001 0.005 0.01 0.05 0.15
E(H)= 103.168 46.1828 32,6552 14.608 8.446
F(H)= 0 0.2987 0.49578 1.441 2.5938

= 0.2 0.3 0.5 1 2
EH)= 7.323 5.9998 4.69792 348186 2.84294
F(H) = 2.988 3.6542 4.7239 6.76884  9.93124

= 3 S 10 100
E{H)= 2.7052 2.6676 2.6666 2.6666
FiH)= 12.7054 18.078 31416 271416
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small numerical example with real accepted values
for w, and R,. Let it be: wy = 30-1072[m], Ry =
0.57-10"3*[m]. Under given conditions the time
when the condition (39) is fulfilled is © = 1.9-107* [s].

In the further discussion we shall assume that the
condition (39) is fulfilled during the whole conden-
sation process.

It has already been pointed out to the fact that
solutions {4) [7] and (41) are identical. On the other
hand solutions (5} [7] and (52) are of the same
character.

Voloshko and Vurgaft [3,17] have published ex-
perimental results on the vapor bubble collapse in
distilled water. The initial bubble radius was in the
range of Ry = {5-12.5)1072 [m], while the water was
subcooled to AT = (5-25)[K]. The process was per-
formed by gravitational rising of bubbles through
macroscopic stagnant liquid. Unfortunately in {17]
the presented experimental results are given without
precise definition R, w, and Ja for each of experimen-
tal points. Instead of that empirical correlation for
determining initial bubble radius was given [3]

Rq = 0.0295AT -5 [m].

All the experimental results on the bubble radius
change have been correlated by a solid line in Fig. 2
[3]. According to [3] the deviation in correlating of
experimental results was within the range of + 30%,

From Fig. 2, it can be seen that the experimental
correlative curve and theoretical solution (46) are in
qualitative agreement. Deviation of theoretical solu-
tion from experimental correlative curve is less than
+30%,

Abdelmessih, Hooper and Nanngia [18] have re-
ported experimental results on the effect of forced

(K}
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liquid flow on the bubble growth and bubble collapse
in distilled water. Direction of bulk liquid flow was
vertical on the direction of the bubble rise motion.
After detachment from the heating surface the bubble
was exposed to the effect of horizontal component of
the bulk liquid flow w, and vertical component of the
bubble gravitational rise velocity wy. The resulting
velocity is

w=wo[1+ (wy/wo)*]' 2 = wo(1+K)' 2. (53)

In order to be able to compare our theoretical
results with the experiments we have calculated the
factor K on the basis of experimental values for w,
{from [18]) and values for w, from (42) {because the
bubbles in experiments are very small, the largest has
dimension Rppy = 0.256-1073[m]). The bubble
radius has been figured out on the basis of solution
{46) because the resulting flow takes place with
Re > 2. Flow velocity has been calculated on the
basis of equation (53). Comparison of the results is
given in Fig. 3.

From Fig. 3 it can be noticed that the agreement
between theoretical solution {46) and experimental
results is both qualitatively and quantitatively good. It
is also pointed out to an expected phenomena that by
increasing the bulk liquid flow velocity the collapse
rate is also increased.

On this occasion we can point out to the characteris-
tic way of using the solution (46)in the collapse of the
bubble with the forced bulk liquid flow by introducing
relation (53). The presented analysis of the given
example points out to the possibility of application of
solutions obtained for collapse with gravitational
bubble rise motion on the complicated collapse pro-
blems with forced liquid flow. It is evident that in the
case of the forced flow the collapse rate could be

o X -]

0.6
o
o
~
«
0.4
0.2
\
\
! L1 L0 ] LAY
10-6 2 3 4 € 8 o8 2 3 4 [ 8 g4
Fo

Fi1G. 2. Comparison between theory and experiments [3]. 1. Experiments [3]; 2. Equation (46), Ja = 30; 3.
Equation {46), Ju = 45; 4. Equation (46), Ja = 60.
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Fia. 3. Comparison between theory and experiments [18]. 1. Equation (46), Ry = 0.256-1073m; K = 54.

2. Equation {46), R, =0218-107°m; K =

14.77. 3. Equation (46}, Ro =0:184-10"*m; K = 39.65. 4.

Equation (46}, Ry = 0.16-1073m; K = 90.55.00, [18]. Ry = 0.256- 10 3 m; w, = 1142m/s. O, [18], R,
=0218-10"*m; w, = 1.37m/s. A, [18], R, = 0.184-10°m; w, —1599m/sA[18] Ry=0.16-10"3m;
w, = 1.827m/s.

determined from adequate solution of the collapse
problem with the gravitational bubble rise velocity in
which it should be included the resuitant flow velocity
[defined by the relationship of the type (53)]. For
generalization of this assumption it should possess
more experimental results.

CONCLUSIONS

1. Collapse of single one-component vapor bubble
is defined by the general implicit solution (20), the
solutions obtained by assuming the quasi linearity of
the problem (31) and the solutions obtained by the
assuming quasi steady state problem (37), (40).

2. Analysis of the quasi steady state solution (40} is
performed under the assumption that the actual
translational velocity during the collapse of the bubble
can be approximated with thermal velocity of the
bubble rise motion. In that way for different flow
regimes a set of explicit functional dependences was
obtained for determining of collapse rate.

3. Expression {28), obtained from the general solu-
tion (20) as the special case valid for the collapse of
stagnant bubble is compared with those by other
authors. The agreement between the results is within
the deviation range of + 6%

4. Explicit solutions based on the quasi steady state
model are compared with available experimental data
[3, 17, 18]. A good agreement is shown, especially with
experiments [ 18]. It was indicated to the possibility of
determining the collapse rate with forced bulk liquid
flow by using a simple method of introducing the
resultant flow velocity in the expressions obtained as
the solutions of the quasi steady state collapse with the
gravitational bubble rise motion.
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COLLAPSUS D’'UNE BULLE DE VAPEUR A UN SEUL COMPOSANT
AVEC MOUVEMENT DE TRANSLATION

Résume—On analyse théoriquement le collapsus d’une bulle de vapeur avec un mouvement translatoire
dans un liquide uniformément sous-refroidi, La bulle est sphérique et 'écoulement dans la région proche
de la bulle est potentiel. On obtient une solution générale dans laquelle la fonction R = R(r) est définie
implicitement par une équation intégrale. La solution générale est réduite a celle d’'un probléme quasi
linéaire d’état quasi permanent. La solution de I’état quasi permanent est utilisée pour obtenir un
systéme d’expressions simples et explicites par lesquelles le rayon de bulle est déterminé en fonction du
temps. Les résultats de I'analyse théorique sont comparés avec ceux donnés par d’autres auteurs et avec
des résultats expérimentaux. Dans la comparaison entre données expérimentales et résultats théoriques,
Paccord est trés bon.

DAS ZUSAMMENBRECHEN EINER TRANSLATORISCH BEWEGTEN
EINKOMPONENTEN-DAMPFBLASE

Zusammenfassung—Das Zusammenbrechen einer in einer gleichférmig unterkiihlten Fliissigkeit translato-
rischbewegten Einkomponenten-Dampfblase wurde theoretisch untersucht. In der Umgebung der kugelfor-
migen Blase wurde Potentialstrémung vorausgesetzt. Es wurde eine aligemeine Losung gefunden, wobei die
Funktion R = R(r) implizit durch eine Integralgleichung gegeben ist. Aus der allgemeinen Lésung ergeben
sich die Losungen fiir den quasistationdren und den quasilinearen- Fall Aus der Lésung fiir den
quasistationdren Fall werden einfache explizite Ausdriicke fiir den Blasenradius in Abhiingigkeit von der
Zeit abgeleitet. Die Ergebnisse der theoretischen Untersuchung werden mit denen anderer Autoren und mit
MeBwerten verglichen. Die Ubereinstimmung zwischen experimentellen und theoretischen Ergebnissen ist
sehr gut.

PAPYHIEHME OJHOKOMITIOHEHTHOIO NAPOBOI'O MV3bIPA INPU
NOCTYNATEJBHOM ABMKEHUU

Amnoranus — TIpOBOAMTCA TEOPETHYECKOE HCCNCHOBAHME Da3pyLUEHHs] OXHOKOMIIOHEHTHOTO Napo-
BOrc My3sIps OPH NOCTYNATENBHOM [BHXCHHH B DAaBHOMEPHO OXNaXICHHOW XMAKOCTH. ITy3sipe
HMeeT chepHyecKylo GopMy, TeucHHE BOKDYT My3bIpA HOCHT MOTEHUMANbHLIH Xapaxtep. ITonyueno
o01uee pewnenue, B KoTopoM dyHKUKA R = k () ONpeeneHa ¢ HOMOLIBLK) MHTErPANBHOTO YPaBHEHHS
B HemBHOM ¢opme. OOuiee pelicHHEe CBOOMTCH K KBa3HCTALMOHADHON M KBajMIHHeHHOM 3amaue.
Ksa3acTauHoHapHOE PEIlCHHE HCIIOIIb3YETCH [IA TIONYYEHHS CHCTEMBI MPOCTHIX M ABHLIX BhIPaXCHAIH,
Ha OCHOBE KOTOPBIX ONPENEJIACTCA PAAHYC Ny3bIps B QyHKLMH BpeMeHH. Pe3yIbTaThl TEOPETHYECKOTO
AHANH3a CPABHHUBAIOTCA C PE3Y/ILTATAMHU APYTHX aBTOPOB M C HMEIOIMMHCH IKCIIEPHMEHTANBHBIMH
JaHHbMH. [TonmydeHo Z0BONBHO XOpOUIee COOTBETCTBUE MEXKIY IKCHEPHMEHTANBHBIMHE AaHHBIMH H
TEOPETHYECKHMH PE3ybTATAMH.



